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Abstract. We use the simple, but little-known, result that a uniformly continuous function on a
convex set isε-Lipschitz (as defined below) to extend Piyavskii’s algorithm for Lipschitz global
optimization to the larger domain of continuous (not-necessarily-Lipschitz) global optimization.
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1. Introduction

The problem of optimizing a Lipschitz continuous function (with known Lipschitz
constant) over a compact set inRn is an important global optimization problem
since it embodies seemingly minimal assumptions and yet it yields to effective
algorithms. In this paper, we give a new characterization of continuous functions
on compact, convex domains as beingε-Lipschitz (to be defined shortly). Using
this new characterization, we are able to extend most, if not all, of the theory
of optimization of Lipschitz continuous functions to the more general class of
continuous functions (that are not necessarily Lipschitz).

To focus on the main idea, we assume for most of this paper thatn = 1 and
that the domain is a compact interval[a, b] ⊂ R. We leave to others the interesting
task of applying the main idea to the many and varied algorithms that already exist
for Lipschitz global optimization. These algorithms are surveyed in (Hansen et al.,
1992a) and (Pintér, 1996).

The problem then is, given a continuous functionf on [a, b], findx∗ that attains
the global maximum:

max
x∈[a,b]

f (x).

If f is Lipschitz with a known Lipschitz constant (or overestimate thereof), we call
the problem aLipschitz global optimizationproblem.
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Figure 1. Upper and lower bounding function derived from a single observation aty.

2. Lipschitz global optimization

We begin with a brief description of the main estimate that underlies Lipschitz
global optimization. So in this section, we suppose thatf is Lipschitz with para-
meterK. Then, for everyy ∈ [a, b], we have the inequality:

|f (x)− f (y)| 6 K|x − y|, for all x ∈ [a, b].
Thinking of y as a point at which we’ve sampled the function andx as variable,
the Lipschitz inequality gives us bounds (both upper and lower) on the values of
the functionf at other points:

f (y)−K|x − y| 6 f (x) 6 f (y)+K|x − y|
(see Figure 1). Hence, even after sampling the objective function just once, we
have a (crude) bound on how far the optimal solution is from the observed sample.
Further sampling allows us to improve the bound. For example, if we observef at
the left and right end-points of the feasible interval,y = a andy = b, we get the
following two upper-bounding functions:

f (x) 6 f (a)+K(x − a)
and

f (x) 6 f (b)−K(x − b).
Denoting byz the value ofx at which these two bounding functions cross, it is easy
to see that

z = 1

2
(a + b)+ 1

2K
(f (b)− f (a)).

The common value of the two bounds at this point gives an upper bound on the
functionf over the entire interval:

max
x∈[a,b]

f (x) 6 1

2
K(b − a)+ 1

2
(f (a)+ f (b)).
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Figure 2. Lipschitz continuous objective function and upper bounding function obtained from
observations aty1, y2, . . . , y10.

From this bound, we derive an estimate for the closeness of the maximum off (a)

andf (b) to optimality:

max
x∈[a,b]

f (x)−max{f (a), f (b)} 6 1

2
K(b − a)− 1

2
|f (b)− f (a)|

6 1

2
K(b − a).

Of course, bothK andb − a might be quite large. But, by taking further samples,
one can in effect replaceb − a by the length of successively smaller subintervals
(see Figure 2). In this manner, one can develop efficient algorithms for finding a
solution that is within a prespecified tolerance of an optimal solution in just a finite
number of iterations.

The papers (Hansen et al., 1991), (Hansen et al., 1992a), and (Hansen et al.,
1992b) give an extensive survey of algorithms for Lipschitz global optimization
all of which are based on this idea. Of course, the methods generally assumea
priori knowledge of the parameterK. This can be problematic. But, if the objective
function is differentiable, then any bound on the magnitude of its derivative can be
used forK.

3. A characterization of uniform continuity

The following result will allow us to extend the idea behind Lipschitz global opti-
mization to continuous global optimization:

THEOREM 1 A real-valued functionf defined on a convex domainD ⊂ Rn is
uniformly continuous if and only if, for everyε > 0, there exists aK < ∞ such
that |f (x)− f (y)| 6 K‖x − y‖ + ε for all x, y ∈ D.

This theorem was proved in the unpublished technical report (Vanderbei, 1991).
For completeness, we repeat the proof here.

Proof.Suppose thatf is uniformly continuous onD and fixε > 0. Then, there
exists aδ > 0 such that|f (z)− f (z′)| < ε whenever‖z− z′‖ < δ. Fix x andy in
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D and let

zk = y + k δ
2

x − y
‖x − y‖ for k = 0,1,2, . . . , N

where

N =
⌊‖x − y‖

δ/2

⌋
,

andb·c denotes the greatest-integer function. From the convexity ofD, we see that
eachzk belongs toD. Also,

z0 = y,

‖zk − zk−1‖ = δ/2,
and

‖x − zN‖ < δ/2.
Hence,

|f (x)− f (y)| 6
N∑
k=1

|f (zk)− f (zk−1)| + |f (x)− f (zN)|

< (N + 1)ε

6 2ε

δ
‖x − y‖ + ε.

PickingK = 2ε/δ establishes the ‘only if’ direction.
For the ‘if’ part, suppose thatf satisfies the condition given in the theorem. Fix

ε > 0 and chooseK so that

|f (x)− f (y)| 6 K‖x − y‖ + ε/2
for all x, y ∈ D. Putδ = ε/2K. If ‖x − y‖ < δ, then we see that

|f (x)− f (y)| < ε.
Hence,f is uniformly continuous. 2
REMARK. The assumption that the domainD be convex is essential for the the-
orem. To see why, consider the domainD = {(x, y) : y = x sinx} in R2 and the
function that is arc-length distance from the origin. Although arc-length distance is
hard to compute explicitly, it can be easily approximated by noting that all points
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Figure 3. Upper and lower bounding function derived from a single observation aty.

of the form(kπ,0) and(kπ +π/2, (−1)k(kπ +π/2)) with integerk belong toD.
Connecting straight lines segments between successive such points, we see that

f (kπ) >
k∑
j=1

2

√(π
2

)2+ (jπ − π/2)2

>
k∑
j=1

2(j − 1)π

= πk(k − 1).

Sincek(k − 1) > k2/2 for k > 2, it follows that

|f (kπ)− f (0)| > 1

2
πk2

for all k > 2. Hence, for everyε > 0 there is no finiteK for which Theorem 1
holds.

Since a continuous function on a compact set is uniformly continuous, we can
apply Theorem 1 to our optimization problem. Indeed, assuming that a fixed pair
(ε,K) is known, one can proceed along the same lines as before and derive the
following bounds on the values off based on a single observation at a pointx:

f (y)−K|x − y| − ε 6 f (x) 6 f (y)+K|x − y| + ε
(see Figure 3). And as before, by judicious choice of subsequent sample points, one
can sequentially refine this estimate (see Figure 4). Hence, it is possible to extend
essentially every algorithm for Lipschitz global optimization to continuous global
optimization. We carry out this program for one such algorithm in the next section.

4. Extension of Piyavskii’s Algorithm

The first algorithm for Lipschitz global optimization was published in (Piyavskii,
1967) (see also (Piyavskii, 1972)) and was independently rediscovered by (Shubert,
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Figure 4. Continuous, non-Lipschitz, objective function and upper bounding function ob-
tained from observations aty1, y2, . . . , y6.

1972) and (Timonov, 1977). Recently, (Gourdin et al., 1997) gave an extension of
Piyavskii’s algorithm to Hölder continuous functions. In this section, we present
a different (in fact, simpler) extension of Piyavskii’s algorithm to an even larger
problem domain, namely, the domain of continuous optimization (there are, of
course, continuous functions that are not Hölder continuous, e.g., 1/ log(|x|) in
a neighborhood of 0).

We begin by introducing some notation. We shall letY denote the set of points
at whichf has been sampled at a particular stage of the algorithm. The first two
sample points will be the endpoints of the interval. Hence, we always assume that
a andb belong toY. Next, we shall letP denote the set of open intervals the union
of which is the set of points not yet sampled. That is,

∪(yl,yr )∈P (yl, yr) = [a, b] − Y.

At each stage, we shall denote byy∗ the best point of those sampled so far. That is,

y∗ = argmax{f (y) : y ∈ Y}.
We shall refer toy∗ as theincumbent solution. Given an interval, say(yl, yr ), let
u(yl, yr ) denote the upper bound onf obtained by samplingf at the two endpoints
of the interval and using the fact thatf is (ε,K)-Lipschitz. That is,

u(yl, yr ) = 1

2
K(yr − yl)+ 1

2
(f (yl)+ f (yr))+ ε.

Finally, let z(yl, yr ) denote the point at which the upper bounding function attains
this bound:

z(yl, yr ) = 1

2
(yr + yl)+ 1

2K
(f (yr)− f (yl)).

With these notations, Piyavskii’s algorithm is easy to state. First, one must pick
two parameters 06 ε < ε ′ and then a value forK in accordance with Theorem 1.
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The algorithm starts with

Y = {a, b}
P = {(a, b)}
y∗ =

{
a iff (a) > f (b)

b else.

Then it loops through the following sequence of steps:

1. Pick(yl, yr ) = argmax{u(yl, yr ) : (yl, yr ) ∈ P }.
2. If u(yl, yr)− f (y∗) < ε ′, then stop, the incumbent solutiony∗ is ε ′-optimal.
3. Puty = z(yl, yr).
4. Addy to Y.
5. Remove(yl, yr ) from P and add(yl, y) and(y, yr ) to P .
6. If f (y) > f (y∗), then reset the incumbent toy. That is,y∗ ← y.

If f is Lipschitz with parameterK, then one can chooseε = 0. The algorithm then
reduces exactly to Piyavskii’s algorithm for Lipschitz global optimization.

The analysis of the extended Piyavskii algorithm is essentially the same as
the usual analysis of Piyavskii’s algorithm in the Lipschitz case. The details for
the Lipschitz case can be found in (Hansen et al., 1991). We summarize in the
following theorem the main result of the analysis.

THEOREM 2 The worst-case function for Piyavskii’s algorithm is the constant
function. Applying Piyavskii’s algorithm to such a function using Lipschitz constant
K, the error estimate

max
(yl,yr )∈P

u(yl, yr)− f (y∗)

used in the stopping rule is the constantK(b − a)/2n over iterationsk in the
interval 2n−1 < k 6 2n. Hence to reduce the error belowε ′ requires at least
K(b − a)/ε ′ iterations.

In fact, the only change is that all upper bounds need to be shifted upward by the
fixed amountε. Hence, for the extended Piyavskii algorithm, we have the following
result.

THEOREM 3 The worst-case function for the extended Piyavskii algorithm is
the constant function. Applying it to such a function using parametersε andK,
the error estimate used in the stopping rule is the constantε + K(b − a)/2n for
iterations k in the interval2n−1 < k 6 2n. Hence to reduce the error belowε ′
requires at leastK(b − a)/(ε ′ − ε) iterations.

Of course, to implement Piyavskii’s algorithm it must be possible to find an
(ε,K)-pair. Finding such a pair is very much analogous to finding theK for a
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Lipschitz continuous function. Indeed, for functions that are differentiable except
at a few singular points, finding an(ε,K)-pair amounts to analyzing the function
at the singular points. This is the topic of the next section.

5. EstimatingK

Often in global optimization the objective functionf is the output of a ‘black box’
over which the optimizer has no control. In this case, one usually resorts to sto-
chastic estimates of the Lipschitz constant. However, there are situations in which
one does have some control over what the function-evaluation routine can provide
to the optimizer. In these cases, a rigorous estimate for the Lipschitz constant can
often be found. For example, iff is differentiable, then‖f ′‖∞ can be used as the
Lipschitz constant. (Here, the prime denotes differentiation and the norm is the
uniform norm.) Since there are specific formulas for computing derivatives (i.e.,
linearity of differentiation, the product rule, the chain rule, and formulas for the
derivatives of specific elementary functions) and bounding them, it is then easy
to derive an (upper) estimate forK. In this section, we describe how to carry
out the analogous program for continuous functions. Throughout we assume that
all functions have compact domains so that no distinction need be made between
continuous and uniformly continuous functions.

The assertion that ‘for everyε > 0 there exists aK < ∞’ in Theorem 1 is
equivalent to the assertion that there exists a real-valued functionK(ε) defined on
the set of positive reals. Of course, such a function is not unique. The set of such
functions is closed under pointwise minimization and hence there exists a smallest
such function. Denote this smallest function byκ. The following statements are
easy to verify:

THEOREM 4
(a)

κ(ε) = sup
x,y∈dom(f )

|f (x)− f (y)| − ε
|x − y|

(b) κ is a decreasing function and therefore its domain of definition can be ex-
tended to include0:

κ(0) = lim
ε→0

κ(ε).

(c) If f is Lipschitz with parameterL, thenκ(0) 6 L.
(d) If f is continuously differentiable, thenκ(0) = ‖f ′‖∞.

To emphasize the dependence ofκ on the functionf , we shall sometimes writeκf .
The following theorem provides results analogous to the linearity of differentiation
and analogous to the product and chain rules. Some of the formulas involveinfimal
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convolutionoperator⊕, which is defined by

κ1⊕ κ2(ε) = inf
06δ6ε

(κ1(δ)+ κ2(ε − δ)) .

Of course, in practice one does not need to compute the infimal convolution but
rather one simply picks someδ between 0 andε to get a suitable upper bound.

THEOREM 5 Let f and g be continuous functions and letα be a real number.
The following computational identities hold:

(a) καf (ε) = |α|κf (ε/|α|).
(b) κf+g 6 κf ⊕ κg.
(c) κfg 6 κ‖g‖∞f ⊕ κ‖f ‖∞g.
(d) κf ◦g(ε) 6 κf (ε)κg(0).

Proof.
(a) Letf be a continuous function and letα be a real number. Then,

καf (ε) = sup
x,y

|αf (x)− αf (y)| − ε
|x − y|

= |α| sup
x,y

|f (x)− f (y)| − ε/|α|
|x − y|

= |α|κf (ε/|α|).

(b) Let f andg be continuous functions defined on the same domain. Then, for
any 06 δ 6 ε, we have

κf+g(ε) = sup
x,y

|f (x)+ g(x)− f (y)− g(y)| − ε
|x − y|

6 sup
x,y

|f (x)− f (y)| + |g(x)− g(y)| − ε
|x − y|

6 sup
x,y

|f (x)−f (y)|−δ
|x−y| +sup

x,y

|g(x)−g(y)|−(ε−δ)
|x−y|

= κf (δ)+ κf (ε − δ).

Now taking the infimum over allδ, we get

κf+g(ε) 6 inf
06δ6ε

(
κf (δ)+ κg(ε − δ)) = κf ⊕ κg(ε).
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(c) Letf andg be continuous functions defined on the same domain. Then

κfg(ε) = sup
x,y

|f (x)g(x) − f (y)g(y)| − ε
|x − y|

6 sup
x,y

|f (x)− f (y)||g(x)| + |g(x)− g(y)||f (y)| − ε
|x − y|

6 sup
x,y

|f (x)− f (y)|‖g‖∞ − δ
|x − y| + sup

x,y

|g(x)− g(y)|‖f ‖∞ − (ε − δ)
|x − y|

= κ‖g‖∞f (δ)+ κ‖f ‖∞g(ε − δ).
Now taking the infimum over allδ, we get

κfg(ε) 6 inf
06δ6ε

(
κ‖g‖∞f (δ)+ κ‖f ‖∞g(ε − δ)) = κ‖g‖∞f ⊕ κ‖f ‖∞g(ε).

(d) Letf andg be continuous functions such that the range ofg is contained in
the domain off . Then

κf ◦g(ε) = sup
x,y

|f (g(x))− f (g(y))| − ε
|x − y|

= sup
x,y

( |f (g(x))− f (g(y))| − ε
|g(x)− g(y)| · |g(x)− g(y)||x − y|

)
6 sup

ξ,η

( |f (ξ)− f (η)| − ε
|ξ − η|

)
sup
x,y

( |g(x)− g(y)|
|x − y|

)
= κf (ε)κg(0). 2

Finally, it is easy to computeκ for most elementary functions. For example, if

f (x) = xα, x ∈ [0, b],
where 0< α < 1, then an easy calculation shows that

κ(ε) = α
(

1− α
ε

)(1−α)/α
.

Also, if

f (x) = 1/ logx, x ∈ [0, a],
wherea is a small positive number, then

κ(ε) =
(

2ε

1+√1− 4ε

)2

exp

(
1+√1− 4ε

2ε

)
≈ ε2e1/ε.
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6. Extension to Higher Dimensions

To extend Piyavskii’s algorithm to higher dimensions, the main difficulty is to be
able to evaluate the location and value of the maximum of a lower envelope of
functions whose graphs are lower envelopes of cones and whose vertices are at the
corners of a multidimensional rectangle. This maximization is difficult if the cones
correspond to the Euclidean norm; i.e., if the functions are of the form:

φ(x) = f (y)+K‖x − y‖2.
But, we are free to choose any norm. The above optimization is much easier if
the norm is thel1 norm instead of thel2 norm. And since in finite dimensions all
norms are equivalent, the choice of norm has no effect on the class of functions
covered by the theory except that the value ofK will vary. Furthermore, in low
dimensions evenK won’t change very much. Hence, it is natural to construct
higher dimensional variants of the algorithm using thel1 norm. Again, we leave
the details to the interested reader.

7. Future Work

As anyone who has implemented Piyavskii’s algorithm can attest and Theorem
2 confirms, any implementation of the algorithm that uses a single value ofK

over the entire domain of optimization will converge slowly since eventually the
algorithm will sample exclusively in a neighborhood of the optimal solution and in
this neighborhood the function will be approximately constant. A large value forK

is inappropriate in such a neighborhood. To finish quickly, the algorithm needs to
use estimates ofK (or K(ε) in the uniformly continuous case) that are computed
for the subregion in which they will be used. (Sergeyev, 1995) elaborates on these
difficulties and provides ideas on using local estimates.

We have implemented Piyavskii’s algorithm for one-dimensional domains and
have observed the slow convergence mentioned above. Our implementation uses
the AMPL modeling language ((Fourer et al., 1993)) as the user-solver interface.
AMPL uses state-of-art automatic differentiation to provide derivative information
to solvers that require it. We plan to collaborate in the future with the creators of
AMPL to implement the ‘rules of calculus’ given by Theorem 5 for the bounds on
theε-Lipschitz constant. We plan to do this in a local sense so that the inefficiency
mentioned in the previous paragraph can be avoided.
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